Papers on International Journals
More than 100 publications on International Journals in the last 10 years: some notable examples.

Dynamic response of structures
- A. Bertarelli et al., “An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility”, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 308, pp. 88-99 (2013), 10.1016/j.nimb.2013.05.007.
- M. Portelli et al., “Numerical simulation of long rods impacted by particle beams”, Phys. Rev. Accel. Beams 21, 063501 (2018), https://doi.org/10.1103/PhysRevAccelBeams.21.063501.
- Y. Nie et al., “Simulation of hydrodynamic tunneling induced by high-energy proton beam in copper by coupling computer codes”, Phys. Rev. Accel. Beams 22, 014501 (2019), https://doi.org/10.1103/PhysRevAccelBeams.22.014501.
- M. Pasquali et al., “Dynamic Response of Advanced Materials Impacted by Particle Beams: The MultiMat Experiment”, J. dynamic behavior mater. 5, 266–295 (2019), https://doi.org/10.1007/s40870-019-00210-1.
- L. Notari et al., “Dynamic response to short-pulsed U-ion beams of material candidates for vacuum beam windows manufacturing”, Heliyon Vol. 10, Issue 24 (2024), https://doi.org/10.1016/j.heliyon.2024.e40707.
Development of novel materials
- L. Peron, M. Scapin, F. Carra, N. Mariani, “Investigation of Dynamic Fracture Behavior of Graphite”, KEM 569–570, 103–110 (2013), https://doi.org/10.4028/www.scientific.net/kem.569-570.103 .
- M. Scapin, L. Peroni, F. Carra, “Investigation and Mechanical Modelling of Pure Molybdenum at High Strain-Rate and Temperature”, J. dynamic behavior mater. 2, 460–475 (2016), https://doi.org/10.1007/s40870-016-0081-3.
- E. Quaranta et al., “Radiation-induced Effects on LHC Collimator Materials under Extreme Beam Conditions”, Proc. 7th International Particle Accelerator Conference (IPAC 2016): Busan, Korea, May 8-13 (2016), DOI:10.18429/JACoW-IPAC2016-WEPMW032.
- M. Portelli et al., “Wave-particle interactions in copper-diamond”, Phys. Rev. Accel. Beams 26, 084501 (2023), DOI: https://doi.org/10.1103/PhysRevAccelBeams.26.084501.
- A. Gallifa Terricabras, J. Swieszek, D. Smakulska, B. Ruiz Palenzuela, M. Garlaschè, “Forming limit diagram of annealed copper OFE thick sheets for optimized hydroforming of superconducting RF cavities”, Materials & Design, Vol. 244, 113191 (2024), https://doi.org/10.1016/j.matdes.2024.113191
Engineering of particle accelerator equipment
- E. Quaranta et al., “Modeling of beam-induced damage of the LHC tertiary collimators”, Phys. Rev. Accel. Beams 20, 091002 (2017), DOI: https://doi.org/10.1103/PhysRevAccelBeams.20.091002.
- T. Capelli et al., “Design of Crab Cavity Cryomodule for HL-LHC”, 19th International Conference on RF Superconductivity (SRF 2019), 320-325 (2019), DOI: 10.18429/JACoW-SRF2019-MOP099.
- F. Carra et al., “First considerations on the supporting structures of FCC-ee booster and collider in the arc regions”, JINST 19 T02008 (2024), DOI: 10.1088/1748-0221/19/02/T02008.
- P. Lersnimitthum et al., “Future Circular Lepton Collider Vibrational Crosstalk”, Vibration 2024, 7(4), 912-927 (2024), https://doi.org/10.3390/vibration7040048.
- G. Ceruti et al., “Mechanical Optimization and Study of the Superconducting Magnet CHiC”, International Journal of Mechanical Sciences, Vol. 297–298, 110320 (2025), https://doi.org/10.1016/j.ijmecsci.2025.110320.
Advanced calculations techniques & PhD Theses
- F. Carra, “Advanced engineering simulation methods developed in the EN-MME engineering unit”, CERN-ACC-NOTE-2022-0025 (2012), http://cds.cern.ch/record/2840275.
- E. Cano Pleite et al., “Numerical evaluation of the tuning, pressure sensitivity and Lorentz force detuning of RF superconducting crab cavities”, Proceedings of the 2018 COMSOL Conference in Lausanne (2018), COMSOL Website.
- J. Guardia, “Optimisation of Graphite-Matrix Composites for Collimators in the LHC Upgrade”, PhD Thesis (2019), DOI: 10.5281/zenodo.5837352.
- C. Accettura, “Investigation of radiation damage effects in HL-LHC collimator materials”, PhD Thesis (2020), https://www.politesi.polimi.it/handle/10589/180137.L. Piacentini et al., “Lumped Parameter Model for Structural Analysis of Over-Constrained Multi-Legged Parallel Mechanism Supporting System Applied to Cryogenic Devices”, Machines, 13(2), 129 (2025), https://doi.org/10.3390/machines13020129.
- L. Piacentini et al., “Lumped Parameter Model for Structural Analysis of Over-Constrained Multi-Legged Parallel Mechanism Supporting System Applied to Cryogenic Devices”, Machines, 13(2), 129 (2025), https://doi.org/10.3390/machines13020129.